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A B S T R A C T

The predictions of residual stresses are most critical on the machined aerospace components for the

safety of the aircraft. In this paper, an enhanced analytic elasto-plastic model is presented using the

superposition of thermal and mechanical stresses on the workpiece, followed by a relaxation procedure.

Theoretical residual stress predictions are verified experimentally with X-ray diffraction measurements

on the high strength engineering material of Waspaloy that is used critical parts such as in aircraft jet

engines. With the enhanced analytical model, accurate residual stress results are achieved, while the

computational time compared to equivalent FEM models is decreased from days to seconds.

� 2008 CIRP.
1. Introduction

The major goal of this work is to develop a fast, accurate and an
enhanced model for the predictions of the residual stresses on
parts after machining processes. The predictions of residual
stresses left on the part as a function of cutting conditions are
critical to improve the fatigue life, fracture behavior, corrosion
resistance and structural integrity of parts, especially in aerospace
industry. There have been studies to predict and measure residual
stresses in machining processes. Brinksmeier et al. [1] examined
the effects of tool edge on residual stresses. Matsumoto et al. [2]
experimentally investigated effects of cutting parameters on
residual stresses in hard turning. Studies of residual stress
modeling efforts are mostly on the FEM-based methods using
rigid–plastic, elasto–plastic and elastic–viscoplastic models [3–6].
Although they perform well in general, FEM-based models require
a long computation time, confined to parametric studies and are
not rapidly applicable for machining process optimization in
industry. Therefore, much faster and accurate analytical models
are required for process optimization by industry [7,8].

The proposed analytical model considers combined isotropic
and kinematic hardening for a better modeling of the inelastic
deformation of the workpiece rather than isotropic hardening
alone. Triangular distribution of mechanical forces was used
instead of rectangular distribution in order to represent the contact
physics closely. Contact length is calculated analytically using the
contact load, radii and elastic modulus of the tool and the
workpiece as opposed to approximating it as the half circle.
Experimental cutting tests were performed on various machining
conditions on Waspaloy and X-ray diffraction-based residual stress
measurements are performed by the industrial collaborators in
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order to validate the analytical model. The residual stresses are
predicted both in feed and crossfeed directions accurately in less
than a minute.

2. Thermo-mechanical model

The schematic that describes the coordinate system used in
thermo-mechanical model is shown in Fig. 1. There are distributed
loads, p and q, in feed (z-direction) and tangential (x-direction)
directions on the workpiece, respectively. Although easy to apply,
the rectangular distribution does not represent the actual contact
[7]. Hertzian contact is another frequently reported model in the
literature; however, it is not easy to implement numerically, and it
does not include tangential components of cutting forces. In this
study, the loads are modeled as triangularly distributed forces. The
magnitudes of the forces and temperature distribution are
estimated from either measurements or predictions as explained
in detail in [9–11].

As seen from Fig. 1, the system is considered to be two-
dimensional. Representing the orthogonal cutting process, the
problem geometry does not change along the out-of-plane
direction. The workpiece is modeled as a semi-infinite material.
The material is considered to be homogeneous, and it exhibits both
isotropic and kinematic hardening. The temperature distribution
serves as the source of thermal loading on the workpiece in
addition to the mechanical loading.

2.1. Elastic loading

Workpiece has an elastic modulus, E; a Poisson’s ratio, y;
coefficient of thermal expansion, a; isotropic hardening coeffi-
cient, h; and kinematic hardening coefficient, c. Plane strain
condition is assumed on the workpiece, with eyy, the strain
component in y-direction (out-of-plane direction), considered to
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Fig. 1. Coordinate frame used in the model.
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be zero. Therefore, the mechanical loading due to triangularly
distributed forces in feed and tangential directions can be found by
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where p is the normal force distribution (feed direction) and q is
the tangential force distribution (cutting velocity direction) that
are distributed as follows:

pðsÞ ¼ f f 1� jsj
a

� �
; qðsÞ ¼ f v 1� jsj

a

� �
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x and z are the distances from the point of contact to the point of
interest, s is the integration variable, fv and ff are the maximum
magnitudes of the forces in cutting velocity and feed directions,
respectively, and a is the half contact length, i.e. the contact takes
place over �a � x � a. This contact length is a function of several
parameters, and can be calculated from
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Here, P is the total normal force, R is the resultant radius of both the
workpiece and the tool, and similarly, ER is the resultant elastic
modulus. These resultant values can be found by
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where Rt is the nose radius of the tool, Rw is the radius of the
workpiece, and Et is the elastic modulus of the tool. Since the radius
of the workpiece is infinitely large compared to the nose radius of
the tool, resultant radius can be taken as Rt.

The thermal loading due to the temperature field on the
workpiece can be calculated by adding the following three
stresses: (a) thermal stresses due to body forces, (b) thermal
stresses due to surface traction, and (c) thermal stresses due to
hydrostatic pressure.

Superposition of these three stresses will give the total thermal
stresses, sthermal

i j , acting on the workpiece. The procedure was
explained in detail in [7].

When the thermal and mechanical stresses are summed up, the
total elastic stress components can be found at the point of interest
for each tool position.

selastic
m ¼ smechanical

m þ sthermal
m

selastic
yy ¼ yðselastic

xx þ selastic
zz Þ � aEDT

(5)
where m represents the indices of xx, zz and xz. All other stress
components are equal to zero. Here, DT is the temperature
difference from room temperature.

Then, the deviatoric stresses are found by

Si j ¼ si j � 1
3skkdi j (6)

The von Mises yield surface is defined by

f ¼ 1
2ðSi j � ai jÞðSi j � ai jÞ � 2

3s̄
2
0 ¼ 0 (7)

where s̄0 is the current yield stress, and aij denoting the
components of the deviatoric backstress. Combined isotropic
and kinematic hardening is assumed, where both s̄0 (isotropic
part) and aij (kinematic part) are allowed to evolve.

In the elastic regime we have the following strain components:
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2.2. Plastic loading

Fig. 1 depicts the discrete modeling of tool motion. The point of
contact is slowly brought closer to the point of interest. With
decreasing distance between the tool and the point of interest,
stresses in Eq. (5) increase and at one point, the yield criterion in
Eq. (7) is satisfied. It is then important to decrease the step size for
the tool motion, since stress accumulation is now path-dependent.

Due to the similarities between the problem of machining and
elasto-plastic rolling contact, the following stress invariant
assumption is adopted [12]:

sxx ¼ selastic
xx ; szz ¼ selastic

zz ; and sxz ¼ selastic
xz

syy is then calculated by utilizing the plane strain assumption
along the y direction.

Let us now address all contributions to eyy. Using the associated
flow rule of plasticity, plastic strain increments can be written as

deplastic
i j ¼ 1
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where h is the isotropic hardening coefficient and c is the kinematic
hardening coefficient. Prager’s rule is adopted for the evolution of
backstresses, aij.

deplastic
yy can be written specifically as follows:
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The elastic and thermal strain increments can also be calculated as
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E
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The sum of these stresses is then set to zero:

deplastic
yy þ deelastic

yy þ dethermal
yy ¼ 0 (12)

The coefficients of kinematic and isotropic hardening are found
from the uniaxial loading–unloading data of the workpiece
material.

Then, Eq. (12) is solved for dsyy, the differential stress
increment in y-direction:
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After the computation of dsyy, corresponding strain and
back-stress increments are computed and s̄0 is updated. Then



Table 1
Cutting conditions

Condition

1 2 3

Cutting velocity (m/min) 54.9 25 54.9

Feed rate (mm/rev) 0.075 0.15 0.15

Tool rake angle (8) 0 5 0

Contact radius (mm) 34.1 51.6 39.2
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the tool is moved by another increment and the procedure is
repeated. If stresses start to decrease, elastic unloading is
initiated, where Eq. (5) is again used to compute all stress
increments.

2.3. Relaxation

When the unloading is complete, i.e. mechanical and thermal
loading no longer exists (cutting forces are too far away and the
temperature of the point of interest has decreased to ambient
temperature), a certain distribution of stresses and strains is
obtained. This distribution, however, does not correspond to the
actual residual stress and strain distribution,sr

i j and er
i j, respectively,

due to the stress invariant assumption [12]. It is expected that,
(1) e
r
xx ¼ 0 (to ensure planarity of the surface after deformation),

and

(2) s
r

zz ¼ sr
xz ¼ 0 (to retain equilibrium and a traction-free surface).

Therefore, the following stress and strain increments are
enforced:

dexx ¼ �
exx

M
;dszz ¼ �

szz

M
and dsxz ¼ �

sxz

M
(14)

After M steps, exx, szz, and sxz are reduced to zero. If the relaxation
procedure is elastic, Hooke’s Law is used to compute dsxx and dsyy.
If yielding occurs, then the following equations are solved
simultaneously to determine dsxx and dsyy:
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Fig. 2. Temperature field for the workpiece in 8C for condition 2.

Fig. 3. Comparison of simulated and experimentally measured residual stresses for

(a) condition 1, (b) condition 2 and for (c) condition 3.
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At the end of the relaxation procedure, the resulting sxx and syy are
set equal to the corresponding residual stress components sr

xx and
sr

yy, respectively.

3. Experimental validations

Experiments at various cutting conditions were performed on
the advanced material Waspaloy. Sample results for three
conditions are given in Table 1. The depth of cut was 0.25 mm
and tool was Carbide VC29 with nose radius of 2.39 mm in all
experiments. The tool had the elastic modulus (Et) of 672 GPa. The
properties of the workpiece material used in the tests and
simulations are as follows; elastic modulus (E) of 210 GPa, plastic
modulus (G) of 80.2 GPa, poisson’s ratio (y) of 0.314, initial yield
strength (s̄0) of 1016 MPa, isotropic hardening coefficient (h) of
500 MPa, kinematic hardening coefficient (c) of 1100 MPa, thermal
expansion coefficient (a) of 0.15 � 10�6 K�1.

Residual stress measurements were carried out using X-ray
diffraction technique in the depth of cut and cutting velocity
directions. X-ray measurements were carried out using a sine-
squared-psi technique in ‘‘iXRD Combo’’ X-ray diffraction machine.
For the measurements, the radiation was Manganese K-alpha, which
places the diffraction line of the (3 1 1) planes of the fcc lattice at
about 1558 (2-theta). The (3 1 1) family of planes offers a relatively
high-intensity diffraction peak, in conjunction with a moderately
high multiplicity factor mitigating the effects of preferred orienta-
tion and coarser grain size. For a typical measurement, 50 repetitions
of a 0.8-s exposure were made with a 2-mm diameter X-ray beam at
each of 9 beta tilt angles ranging from about �308 to +308.

Temperature distributions in the tool, chip and workpiece were
computed using previously developed finite difference-based
thermal model [9,11]. Temperature distribution on the workpiece
used in the residual stress calculations for condition 2 is given as an
example in Fig. 2.

For validation purposes, analytical residual stress predictions
are compared with the X-ray diffraction-based residual stress
measurements for various conditions. Three of these comparisons
(for the conditions given in Table 1) are given in Fig. 3.

It can be seen in the comparisons that residual stress simulation
results both in the x and y directions are in very good agreement
with the experimental residual stress measurements.

On and near the surface, tensile residual stresses, which may
cause fracture initiations later on, are observed. Maximum tensile
residual stress on the surface is around 500 MPa for condition 2. It
is seen in these conditions compressive stresses take place up to
subsurface depth of 150–200 mm, and maximum compressive
residual stress occurs approximately between 20 and 60 mm
beneath the machined surface. The maximum compressive stress
may change from 150 to 450 MPa.

In these conditions, the residual stresses returns to zero level
after 300 mm beneath the surface.
4. Conclusions

An analytical model is presented for predicting the residual
stresses caused by the metal cutting process. The residual stress
predictions are improved significantly, while reducing the
computational time in comparison to finite element-based
methods. The residual stress simulation and X-ray diffraction
results on Waspaloy machining are presented. By changing the
material properties and cutting conditions, the algorithm can be
easily applied to different materials.

Since compressive surface residual stresses are often consid-
ered to be performance-enhancing in terms of fatigue life, stress
state of the final product might be altered accordingly. Predicting
the residual stresses fast and accurately allows the analytical
model to be used as the potential tool for optimizing the process
conditions.
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