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Analytical modelling of residual stresses in machining

D. Ulutan, B. Erdem Alaca, I. Lazoglu ∗
Department of Mechanical Engineering, Koc University, Rumeli Feneri Yolu, Sariyer, Istanbul 34450, Turkey

Received 10 January 2006; received in revised form 25 September 2006; accepted 29 September 2006

bstract

An analytical model is developed for prediction of residual stresses in machining. In the thermo-mechanical model of residual stresses both
he thermal field of the workpiece and mechanical cutting forces are coupled. The shear energy created in the primary shear zone, the friction
nergy produced at the rake face–chip contact zone, the heat balance between the chip, tool and workpiece are considered based on the first law
f thermodynamics. The temperature distributions on the workpiece, tool and chip are solved by using finite difference method. The calculated

orkpiece temperature field is used in thermal load calculations. Stresses resulting from thermal and mechanical loading are computed using an

nalytical elasto-plastic model and a relaxation procedure. The model is verified with experimental measurements of residual stresses on bearing
teel 100Cr6 (JIS SUJ2) in the literature. With the analytical model presented here, substantial reduction in computational time is achieved in the
redictions of residual stresses.

2006 Elsevier B.V. All rights reserved.
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. Introduction

It is well known that machining processes such as turning,
illing and drilling, create undesirable tensile residual stresses

n the surface of workpieces leading to a reduction in the fatigue
ife of parts. Residual stresses raise the need for over-tolerant
pecifications on the parts or require post-processing in order to
emove tensile residual stresses. It is very critical to find a fast
nd precise solution to predict residual stresses in a machined
omponent given the process parameters and material properties.
aving a reliable simulation tool for residual stresses allows
roduction engineers to select appropriate cutting conditions in
dvance. This facilitates the elimination of residual stresses or
ven altering the state of residual stresses to increase fatigue life
sing optimum machining conditions [1].

Different approaches to the determination of residual stresses
an be summarized as experimental measurements, finite ele-
ent calculations and analytical models. Although it serves as

he ultimate validation tool for numerical or analytical simula-

ions, experimental approach is too costly to be utilized in every
cenario. On the other hand, finite element modelling serves as
good simulation tool; however, it is too time-consuming even
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ith state of the art computational resources. And finally, ana-
ytical modelling provides a fast alternative. In the following, a
omparison of these approaches is given.

Since the pioneering works in 1950s [2], a substantial amount
f experimental work has accumulated regarding the develop-
ent of residual stresses as a function of cutting parameters

nd the properties of the tool and the workpiece. The effects of
eed rate, depth of cut, cutting speed, coolant, shape of the cut-
ing edge, tool wear, tool coating, and workpiece hardness on
esidual stresses can be investigated separately, where residual
tresses are measured after a carefully controlled machining pro-
ess using a variety of techniques ranging from X-ray diffraction
3,4] to hole drilling [5,6] and deflection-etching [7]. Various
aterials including steel [3,5,8,9], ceramics [10,11] and com-

osites [12] have been subjected to similar measurements. Some
f the observed effects can be summarized as follows.

The decisive effect of workpiece hardness on residual stress
istribution is observed to occur through the shear angle, where
arge shear angles lead to a tendency towards compressive resid-
al stresses [13]. Liu and Barash [8] observed in their orthogonal
utting experiments on low-carbon steel that the length of the
hear plane determines the depth over which residual stresses

xist, while the shape of the cutting edge determines residual
tress very near the machined surface. A similar conclusion
egarding the dominant effect of tool nose radius on residual
tresses at the surface was reached by Liu et al. [14] during

mailto:ilazoglu@ku.edu.tr
dx.doi.org/10.1016/j.jmatprotec.2006.09.032
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ard turning of bearing steel JIS SUJ2. The effect is observed to
ecrease with increasing tool wear. The influence of tool edge
eometry was also confirmed by Thiele et al. [15] during hard
urning on AISI 52100 steel and by Arunachalam et al. [16]
n Inconel 718 alloy where increasing nose radius leads to ten-
ile stresses. Increasing cutting speed, another major influence,
s observed to result in tensile residual stresses in experiments
sing tungsten carbide tool on AISI 316L steel [3], WC tool
n gamma TiAl [10] or cubic boron nitride tool on Inconel 718
lloy [17]. In the same work [17], an increase in the depth of
ut is observed to lead to a reduction in compressive stresses at
he entry and increase in tensile stresses at the exit, while there
re reports describing the effect of the depth of cut on residual
tresses as minimal [4]. The influence of feed rate is similarly
eported to be minor [3,9]. The use of coolants, on the other hand,
s observed to result in a shift in the compressive direction [17].

Modelling efforts, on the other hand, can be traced back to
erwin and Johnson’s work [18] analyzing plastic deformation

uring repeated rolling contact on an elastic-perfectly plastic
aterial under plane strain and predicting the variation of resid-

al stresses with the distance from the contact surface. As an
lternative, the stress invariant approach was developed by Jiang
nd Sehitoglu [19], where stresses during elastic–plastic rolling
ontact are taken to be equivalent to the elastic solution, which
s then subjected to a relaxation procedure to meet the residual
tress and strain conditions. Their results compared favorably
ell with finite element predictions and experimental measure-
ents. However, most of the contact mechanics work does not

ake thermal loading into account. There are also phenomeno-
ogical approaches to machining such as [7,20] where the defor-

ation field beneath the surface is approximated by curve fitting
f experimentally observed data. Nevertheless there is a lack of
igorous analytical treatment of the machining process with all
f its aspects, including both mechanical and thermal loads.

Finally, since 1970s finite element analysis has been increas-
ngly employed in machining problems. Saito et al. [21] and
kiyama et al. [22] used finite element analysis to predict ther-
al stresses during cutting. Iwata et al. [23] used a rigid-plastic
odel to analyze steady-state cutting with low cutting speed and

ow strain rates. As an improvement, Strenkowski and Carroll III
24] used an elasto-plastic model for the workpiece. Since these
arly works, different modelling approaches such as chip separa-
ion criterion or remeshing technique have been developed [25]
nd a variety of parametric studies for residual stress prediction
s carried out. Ee et al. [25] developed an elastic–viscoplastic
odel and observed a significant influence of sequential cuts on

esidual stresses. An increase in the tool rake angle is observed to
ead to an increase in tensile residual stresses in the cutting direc-
ion [26]. The effect of tool flank wear length is investigated by
in et al. [27], and it is concluded that with increasing tool flank
ear the compressive stresses increase. Lin et al. [28] also inves-

igated the influences of depth of cut and cutting speed. Residual
tress distributions in hard turning and grinding are compared

y Guo and Barkey [29] using finite element analysis and their
mplications for fatigue are discussed. Hard turning is also inves-
igated by Hua et al. [30,31], and according to their results, a high
eed rate, high workpiece hardness or an increase in hone radius

2

w

essing Technology 183 (2007) 77–87

evelop large compressive stresses. A three-dimensional finite
lement model developed by El-Wardany et al. [32] showed the
ignificant effect of cutting temperature on residual stresses dur-
ng hard turning. Another three-dimensional finite element study
n a composite workpiece by El-Gallab and Sklad [33] con-
luded that although increase in feed rate leads to minor changes,
n increase in cutting speed results in a major shift in stresses in
ensile direction. Finite element method is also applied to resid-
al stress predictions in processes other than turning or grinding
uch as electric discharge machining [34].

It is evident that in order to select appropriate cutting con-
itions, a fast and precise prediction of residual stresses is very
uch desired in various fields such as automotive and aerospace

ndustries. Knowledge of material properties and machining
onditions on the one hand, and thermo-mechanical analysis
f the process on the other hand allow one to fulfill this desire
ith the analytical modelling technique presented in this paper.
ompared to finite element approach, considerable reductions in

imulation time can be achieved thanks to its analytical nature.
uch a simulation tool not only lets the prediction of residual
tresses to be achieved fast and precisely, which is a crucial factor
rom an engineering perspective, but also, from a scientific per-
pective, it allows one to understand the effects of each parameter
n the system in detail and to optimize the process as well.

In this work, an analytical approach is adopted and a thermal
odel for the chip, tool and workpiece is presented first. The cal-

ulated temperature field is then utilized in a thermo-mechanical
odel along with cutting forces to calculate residual stresses due

o thermal and mechanical loading. Thermo-mechanical model
s concluded with verification of simulations by experimental
ata obtained on bearing steel 100Cr6 (JIS SUJ2) as reported in
14].

. Thermal modelling of chip, tool and workpiece

In this section, machining is studied by modelling the heat
ransfer between tool, chip and workpiece. The shear energy
reated in the primary shear zone, the friction energy produced
t the rake face–chip contact zone, the heat balance between
he chip, tool and workpiece are considered. The temperature
istribution is solved using finite difference method. Details of
he temperature modelling can be found in [35]. Here, in this
ection, a short introduction is made for the thermal model used
n the residual stress model.

.1. The heat balance equations

Heat generation mechanisms in the primary shear zone and
n the secondary friction zone, and heat balance equations based
n the first law of thermodynamics for chip, tool and workpiece
hermal fields are briefly written in the finite difference forms
elow.
.2. Heat generated in the primary and secondary zones

In the temperature field predictions for the chip, tool and
orkpiece, which are based on the finite difference method uti-
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ized for the machining operations. Heat generated per unit depth
f cut in the primary and secondary zones are given as follows,
espectively [35].

Q̇s = FsVs = τcVw cos(αn)

sin(φn) cos(φn − αn)
,

Q̇f = FfVc = τcVw sin(βn)

cos(φn + βn − αn) sin(φn − αn)
(1)

here Fs, Ff, Vw, Vs and Vc are the shear force in the shear
lane, the frictional force between the tool rake face and the chip
ontact zone, the cutting velocity, the cutting velocity component
long the shear plane and the cutting velocity component along
he rake face, respectively. τ, ϕn, αn and βn are the shear flow
tress in the shear plane, shear angle, normal rake angle and
ormal friction angle, respectively. c is the instantaneous uncut
hip thickness (c = feed per revolution for turning).

The average temperature rise of the chip per unit depth of cut
ue to the shearing is determined by Oxley’s energy partition
unction [36]:

T̄ = Q̇s(1 − χ)

ρcchVw
(2)

here ρ and cc are the mass density and specific heat capacity of
he chip, respectively.χ represents the proportion of the shearing
ux entering into the workpiece, and is defined by

χ = 0.5 − 0.35 log10(Rt, tan(ϕn)) for

0.004 ≤ Rt tan(φn) ≤ 10,

χ = 0.5 − 0.15 log10(Rt, tan(ϕn)) for Rt tan(φn) ≥ 10 (3)

here Rt = cVw/ζ is the thermal number; ζ the thermal diffusivity
efined as k/(ρc) in which k, ρ, c represent conductivity, mass
ensity and specific heat capacity of medium, respectively.

The average temperature rise on the shear plane is used as a
oundary condition at point D in Fig. 1, and the heat generated
n the primary and secondary zones are used as heat sources in
olving the temperature distribution within the tool, chip and
orkpiece as presented in the following subsections.

.3. Chip temperature model

The chip can be considered as a medium which is in quasi-
tatic thermal equilibrium during an infinitesimal time. By con-
idering orthogonal cutting (Fig. 1), with two-dimensional heat
ow and one-dimensional mass transfer, the heat balance equa-

ion for the discrete chip zone can be written in the finite differ-
nce form in Cartesian coordinates as the following,

Tc(x+ δx, y) + Tc(x− δx, y) − 2Tc(x, y)
δx2

+ Tc(x, y + δy) + Tc(x, y − δy) − 2Tc(x, y)

δy2 + Q̇c(x, y)

= ρcc

kc
Vc
δTc

δx
(4)

v

[

w
(
a

Fig. 1. Illustration of chip, tool and workpiece meshing.

here Q̇c, kc, cc are also the energy generation rate per unit area
n the differential chip zone, thermal conductivity and specific
eat capacity of the chip, respectively.

The chip geometry must be meshed into small discrete ele-
ents for the finite difference solution of the chip temperature
eld and the equilibrium equation above needs to be written for
ach nodal point of the chip. The aspect ratio of the mesh can
e unity to simplify the solutions, δx = δy.

In the equilibrium equation (Eq. (4)), the heat flow into the
ifferential chip control zone (Q̇c) from the frictional heat source
an be localized for each node along the chip–tool contact length
s

˙ c(i) = (1 − Bi)Q̇f dx

lcnkc
if and only if 1 ≤ i ≤ Nx + 1 (5)

here Bi represents the proportion of the frictional heat flowing
nto the tool at the ith nodal point and it is unknown, initially. Q̇f,
cn and Nx are the frictional heat generation rate, chip tool con-
act length and number of grids along the x-axis, respectively. It
hould be noticed that a uniform heat generation was considered
long the chip–tool contact length. The internal nodes (all nodes
ther than 1 ≤ i ≤ Nx + 1) will physically have no heat generation
nput. Therefore, Q̇c(i) will be zero for all these nodes. Equilib-
ium equations for all of the nodes of the chip can be written as
hown in Eq. (4), and all these equilibrium equations can be col-
ected in a compact matrix form, and, therefore, the temperature
f each nodal point in the chip nodal network corresponds to a
alue in the chip temperature array {Tc} can be determined as

A]{T } = {C} → {T } = [A]−1{C} (6)
c c

here [A] is the square coefficient matrix determined from Eq.
4); {Tc} the chip temperature array; {C} is the heat generation
rray. Writing the equilibrium equation for each nodal point
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calculated using finite difference method as briefly explained in
the previous section. The following section is dedicated to cal-
culating stresses within the material due to both mechanical and
thermal loading.
0 D. Ulutan et al. / Journal of Materials

eads to the following elements of coefficient matrix [A], and
eat generation array {C}.

.4. Tool temperature model

Whereas Cartesian coordinates are used for the chip, apply-
ng polar coordinates to the tool is advantageous due to the

athematical accuracy and its convenience in the computational
mplementation of the model. The heat transfer equilibrium
quations for the control zone around the tool nodal points can
e written in the finite difference form in polar coordinates as
he following:

Tt(r+δr,ψ) + Tt(r−δr,ψ) − 2Tt(r,ψ)

δr2 + Tt(r+δr,ψ) − Tt(r−δr,ψ)

2rδr

+ Tt(r,ψ+δψ) + Tt(r,ψ−δψ) − 2Tt(r,ψ)

r2δψ2 + Q̇t = 0 (7)

here Tt represents the tool temperature field; r the radial dis-
ance between the nodal point in concern and the tool tip shown
s point O in Fig. 1;ψ is the angular position of the nodal point. kt
nd Q̇t denote the tool thermal conductivity and heat generation
ate per unit area in the control zone, respectively.

The frictional heat flow rate into the tool is given by

˙ t(i) = BiQ̇f δx

lcnkt
, if and only if 1 ≤ i ≤ Nx + 1 (8)

imilar to the chip heat balance equations, the equilibrium equa-
ions for all nodal points of the tool can be written and collected
n a compact form, and, therefore, the tool temperature distribu-
ion can be determined from

D]{Tt} = {E} → {Tt} = [D]−1{E} (9)

here [D] is the square coefficient matrix determined from Eq.
7); {Tt} the tool temperature array; {E} is the heat generation
rray for the tool.

If the same procedure defined in Cartesian coordinates is
ollowed and the finite difference equilibrium equation of the
ool (Eq. (7)) is written for each nodal point of the tool in polar
oordinates, to the following elements of coefficient matrix [D],
nd heat generation array {E} is obtained.

In the above equations besides the tool and chip temperature
istribution, the partitions of the heat (Bi) at the nodal points
long the chip workpiece contact length are not known initially.
herefore, a recursive process is required for the computation.

nitial values between 0 and 1 can be assigned for the heat par-
ition at each nodal point. The tool and chip temperature fields
an be determined based on the initial assignment of Bi. After

olving the chip and tool heat balance equations (Eqs. (6) and
9)), if temperatures of the corresponding tool and chip nodal
oints, at which tool and chip are in contact, are different than
ach other, then the heat partition value for the corresponding
odal points needs to be modified. Thus, at the end of the recur-
ive solution, the temperature fields of the tool and chip can be
etermined from {Tt}, {Tc}.

F
m
s

essing Technology 183 (2007) 77–87

.5. Workpiece temperature model

Considering the geometry of the system, a first order approx-
mation can be performed and the workpiece can be assumed
s a rectangular body. Therefore; Cartesian coordinates can be
pplied to the workpiece. Similar to chip heat balance equations,
he equilibrium equations for all nodal points of the workpiece
an be written and collected in a compact form. Workpiece tem-
erature distribution can be determined from,

R]{Tw} = [S] → {Tw} − [R]−1[S] (10)

here R is the square coefficient matrix; {Tw} the workpiece
emperature array; {S} is the heat generation array for the
orkpiece. The heat conducted into the work material can be

ound by using Oxley’s energy partition function [36], which is
xplained in Eq. (3).

. Thermo-mechanical modelling of stresses

.1. Elastic loading

Fig. 2 shows the geometry of the problem. The cutting force
s modeled as a distributed load with radial and tangential trac-
ions of magnitude fr and ft, respectively. These tractions are
efined in the oblique coordinate system corresponding to the
ctual cutting geometry and transformed to the orthogonal coor-
inate system of Fig. 2 enabling one to reduce the problem to
wo dimensions. The workpiece is modeled as a semi-infinite,
omogeneous, isotropic, elasto-plastic material exhibiting rate-
ndependent, isotropic hardening with a von Mises yield surface.
he elastic modulus and the Poisson’s ratio of the workpiece are
enoted as E and υ, respectively. Coefficient of thermal expan-
ion is α and the plastic modulus is given as h. The temperature
istribution within the workpiece during the cutting process is
ig. 2. The geometry of the plane strain problem. Stresses resulting from
echanical and thermal loading are expressed in terms of the coordinate system

hown here with the y-axis pointing out of the plane of the drawing.
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Let us first consider mechanical loading due to cutting forces.
ssuming a state of plane strain in y direction (εyy = 0), stresses
nder the normal compressive pressure, fr, and tangential trac-
ion, ft, as given with the associated coordinate system in Fig. 2,
re calculated using the following equations [37]:

σmech
xx = −2z

π

∫ a

−a
fr(x− s)2 ds

((x− s)2+z2)
2 − 2

π

∫ a

−a
ft(x− s)3 ds

((x− s)2 + z2)
2 ,

σmech
zz =−2z3

π

∫ a

−a
fr ds

((x− s)2 + z2)
2 −2z2

π

∫ a

−a
ft(x− s) ds

((x−s)2 + z2)
2 ,

σmech
xz =−2z2

π

∫ a

−a
fr(x−s) ds

((x− s)2 + z2)
2 − 2z

π

∫ a

−a
ft(x− s)2 ds

((x− s)2 + z2)
2

(11)

here the span of the integrals [−a, a], is a function of the cutting
dge radius.

On the other hand, thermal stresses due to non-uniform tem-
erature distribution, T, within the workpiece are calculated by
uperposing,

(i) stresses due to body forces X = −(αE/(1 −2 ν))(δT/δx) and
Z = −(αE/(1 − 2ν))(δT/δz),

(ii) stresses due to a tensile surface traction of αET/(1 − 2ν),
iii) a hydrostatic pressure of αET/(1 − 2ν) [38].

he resulting thermal stress components are given as [37,39]

therm
xx = − αE

1−2ν

∫ ∞

0

∫ ∞

−∞

(
Gxh

∂T

∂x
(x′, z′)+Gxv

∂T

∂z
(x′, z′)

)

× dx′ dz′+2z

π

∫ ∞

−∞
p(t)(t − x)2

((t − x)2 + z2)
2 dt − αET (x, z)

1 − 2ν
,

therm
zz =− αE

1 − 2ν

∫ ∞

0

∫ ∞

−∞

(
Gzh

∂T

∂x
(x′, z′) +Gzv

∂T

∂z
(x′, z′)

)

× dx′ dz′+2z3

π

∫ ∞

−∞
p(t)

((t − x)2 + z2)
2 dt−αET (x, z)

1 − 2ν
,

therm
xz = − αE

1 − 2ν

∫ ∞

0

∫ ∞

−∞

×
(
Gxzh

∂T

∂x
(x′, z′) +Gxzv

∂T

∂z
(x′, z′)

)
dx′ dz′

+ 2z2

π

∫ ∞

−∞
p(t)(x− t)

((t − x)2 + z2)
2 dt (12)

here

(t) = αET (x, z = 0)

1 − 2ν

nd Gxh, Gxv, Gzh, Gzv, Gxzh, and Gxzv are the plane strain

reen’s functions. For example, Gxh(x, z, x′, z′) is the normal

tress σxx(x, z) due to a unit point body load at (x′, z′) acting
long the x direction. Similarly, Gxv(x, z, x′, z′) is the normal
tress σxx(x, z) due to a unit point body load at (x′, z′) acting

M

f

Fig. 3. The discretization of tool motion within the plastic zone BC.

long the z direction. These functions are used throughout this
ork as given by Saif et al. [39].
Finally, mechanical and thermal stresses are added to com-

ute the total elastic stress, i.e.

σel
xx = σmech

xx + σtherm
xx , σel

zz = σmech
zz + σtherm

zz ,

σel
xz = σmech

xz + σtherm
xz , σel

yy = ν(σel
xx + σel

zz) − αET (13)

.2. Loading beyond yielding

If the tip is far away (point A in Fig. 3), stresses are elastic at
he point of interest, and hence, the formulation of the preced-
ng section applies. The cutting tool tip travels in the positive x
irection carrying the origin of the coordinate system with itself.
uring this translation, stresses build up at the point of interest,

nd finally, say at point B in Fig. 3, plastic deformation starts
nd continues until the onset of elastic unloading at point C. In
his section, the analytical approach utilized within this plastic
one will be considered.

Realizing the similarities between the loading and the result-
ng stress state of this problem and that of the elastic–plastic
olling contact case, we adopt the stress invariant assumption
nd subsequent relaxation procedure utilized in contact prob-
ems [19]. This assumption can be stated as

ij = σel
ij (14)

here σij stand for stress components. Specifically, for the case
f plane strain explained in Fig. 2, Eq. (14) can be restated as

xx = σel
xx, σzz = σel

zz, σxz = σel
xz (15)

ith the exception of σyy. In the following, the evolution of σyy

n the plastic regime is studied.
Assuming that the workpiece is isotropic and obeys the von
ises criterion for yielding, i.e. the yield surface is defined by

= 1

2
SijSij − k2 = 0 (16)
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here

ij = σij − 1

3
σkkδij (deviatoric stresses)

nd k is the current yield strength in pure shear, the “associated
ow rule” or the so-called “normality” condition can be used to

p
alculate plastic strain increments, dεij:

ε
p
ij = 1

2hk2 SijSkl dσkl (17)

s
l
F
p

Fig. 4. Temperature field simulations for: (a) chip; (b)
essing Technology 183 (2007) 77–87

ith h as the plastic modulus is an indication of the change
f the yield surface size as a function of plastic strain. In
his approach, a rate-independent, purely isotropic hardening
s assumed with the yield surface expanding or contracting uni-
ormly without translation and without changing in shape. As a
esult, the Bauschinger effect is neglected. However, anisotropy
pon unloading can easily be incorporated into the model by

witching to kinematic hardening by taking into account the evo-
ution of deviatoric back stresses as a new state variable [40].
or the sake of simplicity, Eq. (17) will be used throughout this
aper.

tool; (c) workpiece for a depth of cut of 0.1 mm.
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Coming back to Fig. 3, stress increments dσxx, dσzz, and
σxz are calculated according to Eq. (15), when the cutting tool
s moved by an amount of dx accompanied by a temperature
hange of dT. On the other hand, the increment dσyy is calculated
sing stress components from the previous step and the fact that
εyy = dεel

yy + dεtherm
yy + dεp

yy = 0. Since we know the elastic,
hermal and plastic contributions to dεyy with

dεel
yy = dσyy − ν

(dσxx + dσzz), dεtherm
yy = α dT,
E E

dεp
yy = 1

2hk2 (SxxSyy dσxx + SyySyy dσyy + SzzSyy dσzz

+ 2SxzSyy dσxz) (18)

s
m
i
O

Fig. 5. Temperature field simulations for: (a) chip; (b)
essing Technology 183 (2007) 77–87 83

orresponding dσyy can be calculated in closed form as

σyy = 1

1 + E
2hk2

{(
ν − E

2hk2 SxxSyy

)
dσxx

+
(
ν − E

2hk2 SzzSyy

)
dσzz

− E

hk2 SxzSyy dσxz − αE dT

}
(19)

his procedure is repeated for every increment dx until stresses

tart decreasing at the point of interest when the cutting tool
oves away. Beyond this point (point C in Fig. 3), elastic unload-

ng takes place where the full scope of Eq. (13) is again used.
nce the elastic unloading is complete, i.e. the cutting forces no

tool; (c) workpiece for a depth of cut of 0.2 mm.
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with chamfer angle of 25 , cutting edge radius of 0.01 mm and
nose radii of 0.4, 0.8 and 1.2 mm were used in dry cutting
conditions. The cutting speed was 120 mm/min, feedrate was
0.1 mm/rev, and depth of cut was chosen to be 0.1 and 0.2 mm.
4 D. Ulutan et al. / Journal of Materials

onger produce any stresses at the point of interest and the tem-
erature has decreased to its ambient value so that T(x, z) = 0,
istributions of stresses and strains are determined. Next sec-
ion deals with the final question of relating these stresses to the
esidual stresses through a relaxation procedure.

.3. Final relaxation procedure

Before proceeding to the calculation of the magnitude of
esidual stresses, let us first consider the characteristics of indi-
idual components, σr

ij . The following discussion is mainly due
o Merwin and Johnson [18].

Plane strain assumption along the y direction leads to σr
xy =

r
zy = εr

yy = εr
xy = εr

zy = 0. The remaining stress and strain
omponents should be also independent of y. Furthermore, if
he plastic deformation takes place in a continuous manner, it
an be assumed that the surface remains planar after deforma-
ion eliminating εr

xx and making all other remaining stress and
train components independent of x. In order to retain equilib-
ium and a traction-free surface, σr

zz and σr
xz cannot exist. Hence,

he expected outcome of the cutting process can be summarized
s follows:

σr
xx = f1(z), σr

yy = f2(z), σr
zz = σr

xz = σr
xy = σr

zy = 0,

εr
zz = f3(z), εr

xz = f4(z) (20)

r
xx = εr

yy = εr
xy = εr

zy = 0 (21)

here fk(z) is a function of z, i.e. the depth of the point of
nterest.

However, when Eq. (14) is invoked, most of the resulting
tresses and strains are non-zero, and hence, they do not satisfy
qs. (20) and (21). Let us denote these non-zero components as
f
xx, σ

f
zz and σf

xz. Therefore, stress and strain increments of Eq.
22) are enforced as a part of a relaxation procedure as proposed
n [19].

εxx = εf
xx

M
, dσzz = σf

zz

M
, dσxz = σf

xz

M
(22)

fter a total of M steps, stress and strain components in Eq. (22)
re reduced to zero. Meanwhile, the corresponding changes in
xx and σyy are computed. If the relaxation is elastic, Hooke’s
aw is utilized in determining these two stresses. If yielding
ccurs, then Eqs. (23) and (24) are solved simultaneously to
etermine dσxx and dσyy. Once the relaxation procedure is com-
leted, the resulting σxx and σyy are taken as the residual stresses
r
xx andσr

yy along the feed direction and perpendicular to the feed

irection, respectively.

{
E

2hk2 SxxSyy − ν

}
dσxx +

{
E

2hk2 SyySyy + 1

}
dσyy

+
{

E

2hk2 SzzSyy − ν

}
dσzz +

{
E

hk2 SxzSyy

}
dσxz = 0

(23)

F
f
0

essing Technology 183 (2007) 77–87

{
E

2hk2 SxxSxx + 1

}
dσxx +

{
E

2hk2 SyySxx − ν

}
dσyy

+
{

E

2hk2 SzzSxx − ν

}
dσzz +

{
E

hk2 SxzSxx

}
dσxz = dεxx

(24)

. Simulations and validations

In order to validate the theoretical residual stress model, sim-
lations were performed at experimental conditions reported by
iu et al. [14] on hard turning of bearing steel 100Cr6 (JIS SUJ2).

n these tests CBN tools (Mitsubishi Materials, Grade MB825)
◦

ig. 6. Comparison of simulations and experimental results of Liu et al. [14]
or a nose radius of 0.4 mm: (a) depth of cut of 0.1 mm and (b) depth of cut of
.2 mm.
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Fig. 7. Comparison of simulated and experimental results of Liu et al. [14] for a
n

X
o
t

a
fi
t
c
fi
f
s
d
r
r
f
n
t

F
n

(

(

(

the maximum nose radius of 1.2 mm, stress along the feed
ose radius of 0.8 mm: (a) depth of cut of 0.1 mm and (b) depth of cut of 0.2 mm.

-ray diffraction technique was employed for the measurement
f resulting residual stresses along the feed direction as a func-
ion of depth from the machined surface.

For the reported experimental conditions, coupled tool, chip
nd workpiece temperature fields were simulated by using the
nite difference method as explained in Section 2. Some of the

ypical thermal field simulation results for different depths of
ut are shown in Figs. 4 and 5. The resulting workpiece thermal
elds are then utilized as inputs to the thermo-mechanical model
or residual stress predictions. For the fresh tool with a contact
pan of 50 microns, the simulated residual stresses along the
epth from the workpiece surface are shown for various nose
adii and depths of cut in Figs. 6–8. It is observed that simulation
esults and experimental measurements reported in [14] match
airly well. Stresses perpendicular to the feed direction could

ot be compared due to the lack of experimental data. Some of
he observations can be summarized as follows:
ig. 8. Comparison of simulated and experimental results of Liu et al. [14] for a
ose radius of 1.2 mm: (a) depth of cut of 0.1 mm and (b) depth of cut of 0.2 mm.

1) In experiments, the maximum value of compressive stresses
along the feed direction beneath the surface is observed to
decrease with increasing nose radius. Both this trend and
magnitude of stresses are matched closely by the simula-
tions.

2) Experimental measurements are observed to die out at
depths closer to the machined surface whereas simulations
predict existence of residual stresses at deeper levels. How-
ever, the experimentally observed trend of decreasing depths
with increasing nose radius is followed closely by simula-
tions.

3) With increasing depth of cut, tensile residual stresses at
the surface predicted by the model decrease consistently
for all nose radii. Furthermore, with increasing nose radius,
this tensile surface stress is also observed to decrease. For
direction even becomes compressive if the depth of cut is
increased to 0.2 mm. In experiments, on the other hand, the
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dependence of the surface stress on the depth of cut is not
clear. While it is shifted along the tensile direction for nose
radii of 0.4 and 1.2 mm, the shift is in the compressive direc-
tion for the nose radius of 0.8 mm. As far as the effect of
nose radius is concerned, increasing nose radius leads to a
shift in tensile direction as opposed to simulation results.

From these observations it is evident that the shape of stress
rofile and magnitude of stresses beneath the surface are pre-
icted with better accuracy than at the surface. The difficulty
f taking experimental measurements close to the surface might
lay a role in this mismatch, whereas the deviation becomes less
vident when one compares stresses at deeper levels, and hence,
mportant trends can be acquired from these simulations.

. Conclusions

In this paper, residual stresses occurring due to thermo-
echanical effect of machining processes are investigated. A
nite-difference-based technique was utilized in the solutions
f heat balance equations for determining the thermal fields of
he tool, chip and workpiece. Thermal field of workpiece was
sed in the thermo-mechanical model of the residual stresses.
tresses resulting from thermal and mechanical loading are
omputed using an analytical elasto-plastic model and a relax-
tion procedure. The model is verified with experimental data
f residual stresses on bearing steel 100Cr6 (JIS SUJ2). Due
o its analytical nature the new model allows the prediction
f residual stresses quite fast and with acceptable accuracy.
onsiderable reductions in simulation time, and hence time

equired for the selection of proper machining conditions are
chieved.
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